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Abstract

Existing studies have shown that structural dependencies within code are good pre-

dictors for code actual change impact set—a set of entities that repeatedly changing

together to ensure a consistent and complete change. However, the result is far from

ideal, particularly when insufficient historical data are available at an early stage of

software development. This paper demonstrates that a better understanding of data

dependencies in addition to call dependencies greatly improves actual change impact

set prediction. We propose a new approach and tool (namely, CHIP) to predict soft-

ware actual change impact sets leveraging both call and data sharing dependencies.

For this purpose, CHIP employs novel extensions (dependency frequency filtering

and shared data type idf filtering) to reduce false positives. CHIP assumes that devel-

opers know initial places where to start making changes in the source code even

though they may not know all changes. This approach has been empirically evaluated

on 4 large‐scale open source systems. Our evaluation demonstrates that data sharing

dependencies have a complementary impact on software actual change impact set

prediction as compared with predictions based on call dependencies only. CHIP

improves the F2‐score compared with the predictors using both Program Depen-

dence Graph and evolutionary couplings.
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1 | INTRODUCTION

Software systems are composed of entities such as classes, methods, and variables. These entities depend on one another, for example, by 2

methods sharing data passed through parameters. Problems arise when systems evolve, and developers change these entities to add new

features, retire existing features, or fix bugs. During such evolutions, developers must ensure that dependent entities are changed consis-

tently.1 Since developers find it hard to manually identify such dependent entities, they benefit from automated support. We thus speak

of the change impact analysis (CIA) that guides developers1 to make changes. It identifies sets of entities that repeatedly change together

to ensure a consistent and complete change. This set is called the software actual change impact set.2 Traditional CIA, which aims at

estimating the actual change impact set of a system due to a proposed change,3 is performed manually by developers. Due to the known

complexity of the manual identification of actual change impact sets, developers would greatly benefit from automated predictions

(aka, automated CIA).

State‐of‐the‐art approaches to predicting the actual change impact sets employ 2 main types of automated CIA approaches, namely, static

and dynamic analysis. Dynamic analysis4-15 heavily relies on a complete system execution profile, which is usually difficult to acquire and only

available late during development (after a majority of the system has been implemented) due to the unavailability of complete tasks. Moreover,

most of these techniques trace individual system execution paths and focus on method calls while ignoring data dependencies (eg, fields or

variables) shared across different execution paths. Static analysis1,16-26 predicts actual change impact sets by mining the code change
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repositories from previous changes in software repositories.27 Some static analysis approaches require access to a long history of code changes

to capture the extent to which software artifacts were changed together, namely, evolutionary couplings. However, as software evolves, older

impact set changes could become outdated and possibly misleading. Besides, these approaches often require learning‐based impact set predic-

tors that assume that actual change impact sets follow the same patterns as documented in the history. However, this assumption is not

always true because software changes do not always impact the rest of the system following the same patterns. Other static analysis,

approaches based on textual analysis,1,18-20,22-25 avoid this problem by extracting conceptual dependencies (coupling) via the analysis of com-

ments and/or identifiers in source code.27 They thus do not rely on the history of a software system but rather on its current state. However,

it requires developers to encode the implicit actual change impact sets from the comments and/or identifiers, and hence, the quality of the

change prediction depends on the quality of the encoding. To counter this, another kind of static analysis method is structural analysis,
1,3,18-20,28-37 which leverages call dependencies among entities (most notably method calls) as indicators for the actual change impact set.

For example, if method A calls method B, and B is changed, then method A may likely need changing also. In turn, if method A is changed

then all methods calling A may also need changing. This ripple effect of change propagation progresses until no more changes are required

to source code.38 A variety of these structural analysis approaches leverage program dependence graphs (PDGs)39,40 or employ program slic-

ing.30,31,41 Program dependence graph incorporates 2 kinds of code dependence other than call dependency: (1) control dependence

representing the control flow relationships of the program, and (2) data flow dependence representing the data flow relationships of the

program.42,43 Program slicing,30,31,41 similar to PDG, addresses the computation of effects among program points by traversing data flow

and control flow. It is interesting to note that very few approaches consider data sharing in predicting actual change impact sets. We believe

data sharing is another important indicator for actual change impact sets, which is overlooked by the state‐of‐the‐art CIA. Our working

assumption is that class/method data sharing dependencies are a vital complement to call dependencies in fully understanding code entities

and how they are affected by changes.

To improve the state‐of‐the‐art, this paper investigates the role of data sharing dependencies in actual change impact set prediction. A

method‐level data sharing dependency is defined as 2 methods reading or manipulating variables that point to the same data stored in the same

(physical) memory location no matter whether the variables holding the pointers are identical or not. A class‐level data sharing dependency is the

aggregation of method‐level dependencies. Both kinds of data sharing dependencies are useful. Since shared data are often accessed through ref-

erences or chains of references, unlike other code structural dependencies (ie, call dependencies and control dependencies), data sharing depen-

dencies can only be captured through runtime profiling analysis. To demonstrate that more expressive data sharing dependencies are useful for

the actual change impact set prediction, we compare our approach with PDG in Section 7. In addition, we compare our approach with the

state‐of‐the‐art approach using evolutionary couplings extracted from association rules.

As a prerequisite, our approach requires an initial set of changes, which are the initial changes made by developers. This initial set of classes

is likely a subset of classes that need changing because the developer may not yet understand the complete impact of the changes. The initial set

of changes is thus a subset of all changes needed. Regardless, our approach will analyze call and data sharing dependencies on the initially

changed class(es) to identify additional, dependent classes that likely need changing as well. Our approach then recommends these dependent

classes that likely need changing as well. Our approach then recommends these dependent classes to the developer who decides on whether

or not additional changes are necessary. Our approach then repeats the dependency analysis with every change iteration, thus refining the

change prediction.

The main contributions of this paper are the following:

• A dynamic mechanism to capture both call and data sharing dependencies across software classes and methods, which is then used to frame a

novel basic CHange Impact set Predictor (CHIP). Our experiment results show that code dependencies complement each other in the actual

change impact set prediction. Furthermore, data sharing dependencies are particularly useful in specific change impact scenarios including

“move refactoring,” “remove classes and statement,” “bug fixing,” “functional improvement,” and “code replacement.”

• A change impact set predictor with dependency frequency filter and a novel data type inverse document frequency (idf) filter to reduce false

positives in prediction (ie, false change impact sets) while maintaining the recall. We show that these filters significantly improve F2‐score of

CHIP compared with state‐of‐the‐art approaches.

• An automated tool that provide developers with change impact set predictions.

• An empirical evaluation on hundreds of changes taken from 4 open source systems that span across different domains. The evaluation results

not only demonstrate usefulness of our approach but also help to better understand the benefit of data sharing dependencies with respect to

call dependencies for change impact set prediction

The empirical evaluation also aims to answer the following 3 research questions:
RQ1.
 Do data sharing dependencies complement call dependencies in actual change impact set prediction?
RQ2.
 How effective is the data sharing dependencies compared with traditional program dependence graphs (PDGs) and evolutionary couplings in

actual change impact set prediction?
RQ3.
 The combined call and data sharing dependencies improve predictions in different change impact scenarios as compared with standalone call

dependencies?
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The rest of the paper is organized as follows. Section 2 presents the preliminaries and motivating example. Section 3 introduces the proposed
actual change impact set prediction framework. Section 4 describes our data sharing dependency generation approach. Section 5 elaborates the

proposed actual change impact set prediction algorithm. Sections 6 and 7 present the experiment setup and results, followed by a discussion of

threats to validity in Sections 8. Section 9 summarizes the related work. Section 10 concludes and envisages our future work.
2 | PRELIMINARIES

This section first introduces the state‐of‐the‐art call dependencies generation method that we employ in this study, specifically the PDG gener-

ation algorithm and evolutionary coupling generation algorithm. Then, we present an example to motivate our CHange Impact set Prediction

(CHIP) framework.
2.1 | Dynamically capturing call dependencies

Sound static analysis approaches for capturing call dependencies can guarantee correctness through overestimation but typically produce a large

number of false positives (wrong predictions)44 and consume a significant amount of time or resources when the analysis is performed on the

whole software system. To avoid such problems, we use dynamic analysis to capture actually observed call dependencies. This eliminates false

positives and a reasonable test coverage ensures a high degree of completeness. Next, we describe how System Runtime Profiling is used to cap-

ture call dependencies and what are the differences between call dependency in CHIP and PDG.

1. System Runtime Profiling: To capture high quality execution traces in a Java system, we leverage a tool built on JVMTI (Java Virtual Machine

Tool Interface), which was developed in our previous work.45 This tool provides a way to inspect the state of the Java system and control its

execution while the system runs on the Java Virtual Machine (JVM). Our tool can query and record the special events that are generated by

JVM including “method entry” and “method exit.” To ensure the correctness and completeness of captured dependencies, all functions

according to requirements and use cases documents of each subject system must be executed with our instrumented runtime profiler. The

execution traces are stored to be analyzed in the subsequent steps for dependencies generation.

2. Call Dependency Generator: Note that our approach can be generalized to any language platform in which execution traces can be captured.

We use Java as an example to illustrate the process of capturing call dependencies. Call dependencies are captured by traversing all records in

“method entry” and “method exit” records among the JVM events. This generator traces the events of each thread separately. Method X calls

method Y if both classes are registered in the callback functions of “method entry” and “method exit.”

3. Differences between call dependency and PDG: The main difference between call dependencies extracted by CHIP (CHIP‐Call) and PDG is: PDG

is extracted using static analysis approach, while CHIP‐Call is extracted using dynamic analysis approach. PDG incorporates transitive calling

queries by define and use the same value. For example, PDG considers a dependency relation between method A and method B if a value

defined by A is used by B. However, PDG may not include method calls induced by aggregation of multiple JVM events analyzed by the

JVM runtime profiling tool. To explain the difference between CHIP‐Call and PDG, we use jEdit system as an example. Table 1 shows a partial

execution trace log with 2 execution trace records captured by CHIP. In Table 1, we found a calling dependency between methods

OptionsDialog.init() and StyleTableModel.getTableCellRender() induced by aggregation of 2 execution records in 2 different JVM events (eg,

method exit and method entry). Furthermore, Figure 1 shows a Venn diagram that shows the overlap and distinction between class‐level

CHIP‐Call and class‐level PDG. Both dependencies are captured from the jEdit system that we will discuss in Section 7. As we can see both

approaches share 471 dependencies. However, CHIP‐Call includes 1866 additional call dependencies not captured by PDG, and PDG has 999

data/control flow dependencies not included in CHIP.
2.2 | Program dependence graph (PDG) and evolutionary couplings capturing

In this study, we generate the Program Dependence Graph (PDG) and capture evolutionary couplings to replicate the state‐of‐the‐art actual

change impact set predictors for comparison with our approach.
TABLE 1 Partial execution trace log of jEdit

Order Method JVM Events Thread ID

1 OptionsDialog.init() method exit 27058272

2 StyleTableModel.getTableCellRender() method entry 27058272

Abbreviation: JVM, Java Virtual Machine.



FIGURE 1 Venn diagram of class‐level call dependencies in CHIP (CHIP‐Call) versus class‐level PDG in jEdit. CHIP, CHange Impact set
Prediction; PDG, Program Dependence Graph
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To generate PDG, we apply a tool called “DUA‐Forensics” leveraged in Santelices et al.38 For point‐to analysis, “DUA‐Forensics” finds a set of

classes or methods in locations pointed to by a known class or method variable in context‐ and flow‐ insensitive way.46 To ensure the correctness

and completeness of dependencies, it exploits not only interprocedural (ie, across methods) but also intraprocedural dependencies such as excep-

tion control dependencies.

To capture evolutionary couplings, we apply association rules based on itemset mined from historical change commits. We mine the SVN logs

that were generated before the commits in test set. Details are shown inTable 6. We choose the same support value (=1) as in Zimmermann et al16

to capture a more comprehensive set of evolutionary couplings.
2.3 | Motivating example

Figure 2 shows an example of an actual change impact set prediction on an early version jHotDraw47 following the CIA process. A developer

starts to change the code based on a change request (ie, an item that can be either a bug or a request for enhancement48). This change

request starts with a short description: More options on adjusting the width and height properties of the arc of round rectangle figure. The devel-

oper first changes the class RoundRectangleFigure as it seems an obvious choice. However, the developer does not know whether the change

is limited to this class or also propagated to other dependent classes that require changes as well. Since this is an early version generated at

the early lifecycle of the software development, the developer does not have the access to sufficient historical data either. Table 2 shows

the execution traces of 3 classes (RoundRectangleFigure, RoundRectangleRadiusHandle, and AbstractAttributedFigure) in jHotDraw captured

by our system runtime profiling tool. If we merely consider call dependencies and PDG, the system would predict that class

RoundRectangleRadiusHandle would be the only affected class because in Figure 3 and Table 2 it is obvious that the constructor method

(ie, init()) in class RoundRectangleRadiusHandle is called in method createHandles() of class RoundRectangleFigure. According to other studies,39,49
FIGURE 2 An example of actual change impact set prediction

TABLE 2 Partial execution trace log of jHotDraw

Methods Accessed Variable Name Accessed Variable Reference ID JVM Events

RoundRectangleFigure.createHandles() … … Method exit

RoundRectangleRadiusHandle.init() … … Method entry

RoundRectangleFigure.setArc() roundrect 19330724 …

AbstractAttributedFigure.setAttribute() attributes 19330724 …

Abbreviation: JVM, Java Virtual Machine.



FIGURE 3 An example of code snippet
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data dependencies in PDG are extracted by transitive calling of method queries by value define and use. For example, if method M0 is

required to be changed. Since M0 calls M1 and M4, and also transitively M2, M3 (both via M1), and M5 (further via M2), the change impact

set will not only include M0 but also M1, M4, M2, M3, and M5. Class AbstractAttributedFigure would not be predicted as in impact set

since there is neither a call dependency nor data dependency captured by PDG between classes RoundRectangleFigure and

AbstractAttributedFigure. However, in the version control history of jHotDraw, we find that class AbstractAttributedFigure, often changed

together with RoundRectangleFigure, is also listed in the actual change impact set submitted by developer in the commit history. The reason

is that there was data sharing between RoundRectangleFigure and AbstractAttributedFigure. The difference between the data sharing depen-

dencies and data dependencies in PDGs is that data sharing dependencies can occur by aggregation of multiple JVM events, no matter

whether they are transitive or not. For example, in the code snippet shown in Figure 3, there is a data sharing dependency between

RoundRectangleFigure and AbstractAttributedFigure since the field roundrect accessed in RoundRectangleFigure.setArc() is eventually accessed

by AbstractAttributedFigure.setAttribute() as Object value in the HashMap typed field attributes. Both fields (ie, roundrect and attributes) use

the same data indicated by sharing the same reference ID (19330724) recorded in the execution trace. This execution trace record is shown

in Table 2. It is harder to manually observe that in code snippet that there is a data sharing occurs between classes RoundRectangleFigure and

AbstractAttributedFigure because a field roundrect accessed in RoundRectangleFigure.setArc() is also accessed in RoundRectangleRadiusHandle.

setAttribute() as a field defined as attributes. Fields roundrect and attributes point to the same piece of data in the memory identified by ref-

erence ID 19330724, even though they are declared different variable names. This example tells us actual change impact set prediction prob-

ably depends not only on call, data, and control flow relations between classes but also their data sharing relations. Therefore, we will

investigate whether and how much data sharing dependencies can support software actual change impact set prediction as a complement

to call and control flow dependencies.
3 | PROPOSED ACTUAL CHANGE IMPACT SET PREDICTION (CHIP) FRAMEWORK

3.1 | Usage scenario

Let us consider the following scenario described in Section 2.3. A developer starts by changing identified initial set of classes. No automation sup-

ports this first step. Automation comes into play to find out if the developer needs to change other dependent classes (the actual change impact set)

and to prevent changes like relocating methods inside a class from affecting the actual change impact set prediction. For this, we are only interested

in analyzing and making use of class‐level dependencies to predict class‐level actual change impact set. Specifically, our approach leverages not only

existing code dependencies such as call dependencies but also dependencies based on data sharing, which enhances the existing data flow and con-

trol dependencies. Further, we find that the proposed CHange Impact set Prediction (CHIP) framework is particularly useful in predicting actual

change impact set in the following commonly observed change activities.50 We speak of actual impact scenarios (discussed in Section 7):

• “Moving Refactoring”: A piece of code is moved from one class to another class.

• “Remove Class or Statement”: A class or statement in a class is removed.
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• “Bug Fixing”: Initial changes are made to fix bugs.

• “Functional Improvement”: Initial changes are made to add new features for the system.

• “Code Replacement”: A piece of code is replaced.
3.2 | CHange Impact set Prediction framework

Figure 4 provides an overview of CHIP framework to automatically predict the actual change impact set in source code with an initial set of

changes made by developers. In particular, we will explore whether dependencies based on data sharing captured by our data sharing dependency

generator can complement call dependencies in actual change impact set prediction. A supporting tool for all components in the framework has

been implemented.

Our framework leverages both call and data sharing dependencies. Figure 4 shows the overview of CHIP. The preparation of dependencies is

implemented in the “Preprocessing” component (B). In this component, we capture all execution data through an execution trace profiling tool (B‐

1) and extract both call and data sharing dependencies using the corresponding algorithms (B‐2). The “Change Impact set Prediction” component

automates the prediction of actual change impact set (C‐1), dependency frequency filtering (C‐2) and shared data type idf filtering (C‐3) with

thresholds, in which both thresholds is selected by applying adaptive learning approach. In this step, CHIP makes actual change impact set predic-

tion based on various combinations of code dependencies, as shown in Section 6.
4 | DATA SHARING DEPENDENCY GENERATOR

We capture data sharing dependencies via dynamic analysis from execution traces. Since data sharing dependencies are captured between 2

methods, the class‐level data sharing dependencies are simply the aggregation of method‐level dependencies between 2 classes. This step is

realized by 2 components in the CHIP framework: (a) system runtime profiling (Section 2.1‐1) and (b) data sharing dependency generator

(discussed next).

Similar to call dependencies, data sharing dependencies can be automatically generated via analyzing the events in the execution trace data-

base. Among all JVM events, we find that “method entry,” “method exit,” “field access,” and “field modification” are the ones closely related to data

sharing relations. We have developed our own data sharing dependency generation method and tool to capture class‐level data sharing depen-

dencies. This implementation is currently limited to Java systems but should be easily extensible to other languages. Our tool incorporates 4 var-

iants of data sharing dependency generator for analyzing different JVM events: “field access” events, “field modification” events, “method entry,”

and “method exit” events, as well as the situation of crossing over different events. The algorithms for capturing data sharing dependencies (Sec-

tions 4.1 to 4.4) are available at https://www.dropbox.com/s/wp9pfcptubw9g7p/DataDep.pdf?dl=0.
4.1 | Field access

Data sharing dependency in a “field access” (FA) event is captured when 2 classes access the same field object (variables sharing the same refer-

ence ID) through a “field access” event. In JVM, each object is assigned with a unique hash code as an identifier (note: this is different from the

objects' nonunique hash code). If different parameters refer to the same object, then they are assigned with the identical identifier.
FIGURE 4 Overview of software actual
CHange Impact Set Prediction framework

https://www.dropbox.com/s/wp9pfcptubw9g7p/DataDep.pdf?dl=0
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4.2 | Field modification

For data sharing dependency in “field modification” (FM), the process is almost the same as in FA except that this object is modified in “field mod-

ification” event. For the object being modified, its unique identifier shall be updated by a new one.
4.3 | Parameter passing

Data sharing dependency for Parameter Passing (PP) is captured through “method entry” and “method exit” events. Both events provide a way to

inspect variables (including parameters and return value) created or received by a method. Similarly, if the objects share the same unique identifier,

they are thus identical. The return value is differentiated by its attribute “CurMReturnValue” as a unique identifier. The class that initially accesses

this return value is the receiver.
4.4 | Cross events

In this case, data sharing dependency is captured when it is observed across any of the 4 different JVM events: “field access,” “field modification,”

“method entry,” and “method exit.” If affected data are identical based on their unique identifiers, both classes are considered data sharing depen-

dent on each other even though they may reach objects in different JVM events.

Figure 5 shows 7 examples involving the data sharing dependencies captured in 4 different situations in jHotDraw. Based on Figure 5 CHIP

constructs a data sharing dependency set as shown in Figure 6 simply by adding the dependencies as lines between the classes. Specifically, a data

sharing dependency link between 2 classes is added when any method in each class accesses, modifies, or sends/receives the same piece of data

as identified by its unique identifier.
5 | ACTUAL CHANGE IMPACT SET PREDICTOR (CHIP)

In general, CHIP takes 2 inputs: (1) a set of methods/classes that the developer already made the change and (2) The call and data sharing

dependencies captured using the approaches described in Sections 2 and 4. We have developed 2 variants of the predictor: (1) basic actual

change impact set predictor and (2) two augmented basic predictors with extensions, one with dependency frequency filter and the other with

a data type inverse document frequency (idf) filter in order to improve the precision of the basic predictor, shown as Steps C‐1, C‐2, and C‐3

in Figure 4.
5.1 | Basic actual change impact set predictor

The basic predictor can predict the actual change impact sets at both method‐ and class‐levels based on the call and/or data sharing dependencies in

code. For the empirical evaluation in Section 7, we have developed 4 variants of the basic predictor based on (1) call dependencies only (Pc), (2) data

sharing dependencies only (Pd), (3) both call and data sharing dependencies (Pcd), (4) PDG (Ppdg), and (5) evolutionary couplings (Pe). Ppdg and Pe are

included for comparison with the other CHIP variants (Pd, Pcd) based on data sharing and/or call dependencies. Meanwhile, at both method‐ and
FIGURE 5 Examples of data sharing dependencies



FIGURE 6 An example data sharing dependency set generated from Figure 5
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class‐levels, we consider the effect of the order of changes. When developers make a set of relevant changes in order, we believe that the very first

change he/she makes have a leading impact on the subsequent changes in the actual change impact set, while the impacts of subsequent changes

are diminishing. Therefore, in our algorithm, we assign a higher weight on the very first change and start actual change impact set predictions based

on code dependencies with the very first change. Then, for other methods/classes after the very first change, only shared predictions based on a pair

of methods/classes are included in the predicted change impact set. Equation 1 formalizes the computation of the prediction taking the order of

changes into account:

P ¼ A1 þ ∑
n

i; j¼2
Ai∩Aj: (1)

A1 denotes the predictionmade based on the code dependencieswith the very first change in an actual change impact set.Ai andAj are prediction set of

ith/jth changed method/class in the given set of changes of size n and Ai ≠Aj.

However, that was the very first one in the actual change impact set from the commit history is enclosed and unknown to others except

developers themselves. Therefore, in our experiment, to determine the first changed method/class in a a given change set, we greedily run through

all possible first changed method/class.
5.1.1 | Method‐level prediction

The algorithm predicts the methods that need to be changed together with the method being changed by developer. The following example

explains how the basic predictor predicts actual change impact sets at method‐level. The CIA process starts with an initial set of method‐level

changes that are made by the developer. With an initial set of changes {m1, m2, m3}, if m1 is the first method being changed by developer, the

predictor (Pc or Pd) will search the call or data sharing dependencies to determine which method has the call or data sharing dependency on m1.

If Pc detects that m4 has call dependency with m1, it will predict m4 as in the actual change impact set. Then, for m2 and m3, because of order

of changes effect, only their shared predication are considered. For instance, if Pc detects that m5 has call dependencies on both m2 and m3, it

will predict m5 in the actual change impact set. So the actual change impact set of {m1, m2, m3} are {m4, m5}. Similarly, Pd detects that m6 has

data sharing dependency on m1 and m7 has data sharing dependencies on both m2 and m3, it will predict {m6, m7} as the change impact set.

Pcd make prediction based on both call and data sharing dependencies. For the aforementioned 2 examples, Pcd will predict {m4, m5, m6, m7} as

the change impact set. In method‐level prediction, besides direct dependencies, 2‐step transitive dependencies are also considered taken into

account because many changes are caused by 2‐step transitive impact of initial changes. For instance, if {m1, m2, m3} are given methods being

changed, {m4, m5, m6, m7} are method‐level change impact set based on direct dependencies with the given change set. If m8 is detected to have

call/data sharing dependency with m4, m8 will also be predicted in the change impact set since m8 has 2‐step transitive dependency with given

changed method via m4.
5.1.2 | Class‐level prediction

The class‐level actual change impact set can be derived from the method‐level change impact set prediction results. It is a simple aggregation of

the method‐level results by their owner classes. For example, with the same initial set of method‐level changes {m1, m2, and m3}, Pcd will predict

{m4, m5, m6, and m7}. Assume m1 belongs to class c1, m2, and m3 belong to class c2, m4, and m5 belong to class c3, m6, and m7 belong to c4 and

c5, respectively. We can aggregate the method‐level results and make the change impact set prediction at the class‐level accordingly. If classes {c1,
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c2} are the given set of changes being made by developer, Pcd will predict its actual change impact set as {c3, c4, c5}. Algorithm 1 illustrates how

the class‐level change impact set is predicted.

Example: Figure 7 shows a portion of combined call and data sharing dependencies from jHotdraw, based on which the basic predictor Pcd is

constructed to predict the actual change impact set at the class‐level based on both call and data sharing dependencies. The solid links represent

call dependencies and dashed links represent data sharing dependencies. Based on Figure 7, the basic predictor Pcd is able to predict the actual

change impact set with class RoundRectangleFigure, which are listed in Table 3. “Y” indicates a dependency between 2 classes while “N” indicates

no dependency is detected. In this example, 3 classes BoundsOutlineHandle, ResizeHandleKit, and AbstractFigure are predicted in the actual change

impact set based on call dependencies, while 6 classes AbstractAttributedFigure, TextAreaFigure, ConnectionTool, LineConnectionFigure,

DiamondFigure, and TriangleFigure can only be predicted through data sharing dependencies. The class RoundRectangleRadiusHandle is predicted

by both call and data sharing dependencies.
FIGURE 7 An example of comprehensive set of dependencies with call dependencies (solid links) and data sharing dependencies (dash links) for
the basic predictor



TABLE 3 Predicted actual change impact set with class RoundRectangleFigure by basic predictor

RoundRectangeFigure

Call Data

1 RoundRectangleRadiusHandle Y Y

2 BoundsOutlineHandle Y N

3 ResizeHandleKit Y N

4 AbstractFigure Y N

5 AbstractAttributedFigure N Y

6 TextAreaFigure N Y

7 ConnectionTool N Y

8 LineConnectionFigure N Y

9 DiamondFigure N Y

10 TriangleFigure N Y

10 of 24 LIU ET AL.
Section 7 evaluates the predictability of CHIP at both method‐ and class‐levels in order to compare with different state‐of‐the‐art approaches,

which investigate actual change impacts at either method‐level or class‐level.
5.2 | Extension I: Dependency frequency filter

Nevertheless, we notice that both call and data sharing dependencies introduce heavy noise (false positives), which in turn compromises the pre-

cision of prediction. One reason is that the methods/classes, which have less dependencies on the given change set, are treated equally important

with the ones which have more dependencies on the given change set. To resolve this issue, we introduce a novel Dependency Frequency Filter

extension to the basic predictor using combined call and data sharing dependencies (Pcd). This extension is devised based on how frequent a

method/class is predicted with the given change set. Here is an example. We start from predicting the actual change impact set at the

method‐level, with an initial set of methods {m1, m2, m3} being changed (ie, given change set) and the dependency frequency filter threshold

set as 2, if Pcd detects that m4 only has one data sharing dependency with m1, while m5 has totally 3 call and/or data sharing dependencies with

m2 and m3, then m5 will be predicted in the actual change impact set of {m1, m2, m3} rather than m4 since m4 only has one dependency link with

the given change set, which is below the dependency frequency filter threshold 2. Next, we will make actual change impact set prediction at the

class‐level with dependency frequency filter threshold as 2 as well. Assume m1 belongs to class c1 and both m2 and m3 belong to class c2. If m4 is

owned by class c3, then c3 will have one data sharing dependency with c1. If m5 is owned by class c4, c4 will have 6 call and/or data sharing

dependencies with c2. In this case, c3 will be filtered out and not be predicted in the actual change impact set because it only has one dependency

link with the given change set {c1, c2}, which is below the dependency frequency filter threshold of 2.

Here, we employ adaptive learning to determine the value of the threshold. First, we randomly split the commits of each system fivefolds. We

reserve onefold as an evaluation set and use the other fourfolds as training sets. We then train on the training sets and test the learnt threshold on

the held‐out evaluation set. We compute the F2‐score—a measure that combines precision (fraction of actual changes in prediction) and recall

(fraction of actual changes that are predicted) of the prediction results of evaluation set. If a better F2‐score is achieved, the threshold is adjusted.

This process is repeated. Finally, the optimal threshold corresponding to the highest value of F2‐score is chosen.
5.3 | Extension II: Inverse data frequency (idf) filter

We also notice that data sharing dependencies themselves introduce heavy noise (false positives), which also compromises the precision of pre-

dictions. The reason for this kind of noise is that all shared data types are considered equally important for predicting the actual change impact set.

To tackle this problem, we extend the basic predictor relying on combined call and data sharing dependencies (Pcd) with a novel shared data type

inverse data frequency (idf) filter.

For a data sharing dependency across classes, methods in 2 distinct classes must share data. This data sharing may involve one or multiple

variables or parameters and may cover multiple data types. However, not all the data types provide equally useful implication for the actual change

impact set. The column “Occur” inTable 4 shows how often a data type occurs in all data sharing dependencies generated from the iTrust system.

The maximum occurrence of a data type can be the total number of data sharing dependencies (for iTrust, the total number of data sharing depen-

dencies is 92 285) meaning that a data type is shared in every dependencies. The minimum occurrence is one meaning that this data type is only

shared once. For example, data type java.lang.String is shared by classes much more frequently than other data types. A reasonable conjecture is

that java.lang.String is a commonly shared data type to pass string data across many methods in the iTrust system, which means that this kind of

data types is thus too “general.” If a data sharing dependency between 2 classes is upon a number of “general” data types, this data sharing depen-

dency is probably too “general” to imply an actual change impact set in practice, which should be excluded from our actual change impact set pre-

diction results.



TABLE 4 Top 5 objects with the lowest idf

Object Combination Occur idf Normalized idf

1 java.lang.String 73024 0.23 0.0

2 java.sql.ResultSet 51178 0.59 0.032

3 java.lang.Class 45030 0.72 0.043

4 java.util.List 41469 0.80 0.051

5 edu.ncsu.csc.itrust.beans.PersonnelBean 38645 0.87 0.057
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Hence, we borrow the idea of Inverse Document Frequency51 from information retrieval to define our Inverse Data Frequency to weigh the

importance of each data type for actual change impact set prediction. Inverse Data Frequency (idf) is the measure of occurrence of a data type

across all data sharing dependencies in a system. Specifically, it is defined as follows:

idf ¼ log
N
nd

� �
; (2)

where N is the total amount of data sharing dependencies and nd is the occurrence of a data type across all data sharing dependencies. For the

purpose of generalizing the idf across different systems, we normalize all the idfs in a system as follows:

idfnorm ¼ idf−idfmin

idfmax−idfmin
; (3)

id f min and id f max denote the lowest and highest idf in a system, respectively. The normalization ensures that id f norm falls between 0 and 1. Since

each data sharing dependency could have more than one shared data type, the idf for each data sharing dependency is calculated as id f accum,

which is normalized accumulation of id f norm of all shared data types in each data sharing dependency. In principle, idf will value rare data types

higher than common data types (eg, java.lang.String). The threshold for id f accum on each system is selected using adaptive learning similar to Exten-

sion I (Dependency Frequency Filter) to determine that data sharing dependences are too “general” to be included in the actual change impact set

prediction.

Figure 8 shows the trimmed call and data sharing dependencies after applying the idf filter on the call and data sharing dependencies of

jHotDraw in Figure 7. Table 5 lists the predicted actual change impact set with class RoundRectangleFigure by CHIP with idf extension. In this

example, there are multiple method‐level data sharing dependencies between classes ConnectionTool and RoundRectangleFigure. If we set the

threshold of idf as 0.03, ConnectionTool is eliminated since among all method‐level data sharing dependencies between ConnectionTool and

RoundRectangleFigure the highest idf falls below 0.03. Besides, although RoundRectangleFigure and RoundRectangleRadiusHandle are linked by both

call and data sharing dependencies, RoundRectangleRadiusHandle is still eliminated because the highest idf of data sharing dependencies between

RoundRectangleFigure and RoundRectangleRadiusHandle is also below the idf threshold.
6 | EXPERIMENT DESIGN

Our experiments use CHIP to predict actual change impact sets in source code with an initial set of changes. To investigate the effects of data

sharing dependencies on actual change impact set prediction, we compare the performance among the CHIP variants including the predictors
FIGURE 8 Trimmed call dependencies (solid links) and data sharing dependencies (dash links) after applying the idf filter on Figure 7



TABLE 5 Predicted actual change impact set with class RoundRectangleFigure by basic predictor + idf extension

RoundRectangeFigure

Call Data

1 BoundsOutlineHandle Y N

2 ResizeHandleKit Y N

3 AbstractFigure Y N

4 AbstractAttributedFigure N Y

5 TextAreaFigure N Y

6 LineConnectionFigure N Y

7 DiamondFigure N Y

8 TriangleFigure N Y
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based on call dependencies (Pc), data sharing dependencies (Pd), combined call and data sharing dependencies (Pcd), and Pcd with frequency and idf

extensions (Pcd+ext). We also compare the performance of CHIP variants built on data sharing dependencies and the combined call and data shar-

ing dependencies (Pd, Pcd) with PDG (Ppdg) and evolutionary couplings (Pe).
6.1 | Datasets

Our experiments are conducted on 4 open source Java systems, which have been developed and evolved for a total of over 40 years by hun-

dreds of developers all over the world: jEdit 4.3, a mature programmer's text editor; iTrust 13.0, a medical management system; jHotDraw 7.2, a

Java GUI framework for graphics; GanttProject 2.0.9, a cross‐platform project scheduling and management system. The choice of these 4 sys-

tems is motivated by the need of (1) historical change commits (ie, gold sets of change commits) for evaluation; (2) systems belonging to different

problem domain; (3) systems of different sizes that are neither too small nor too large to allow developers to assess dependencies among

methods/classes of an entire system; and (4) possibility of capturing high quality execution trace by runtime profiling. Table 6 summarizes the

characteristics of the 4 systems.

In class‐level prediction, for a commit of size n, which contains n changed classes, we randomly pick i classes (1 ≤i≤n) from the commit as

the initial set of changes. Similarly, in method‐level, we randomly pick i methods (1 ≤i≤n) from the commit with n changed methods as the initial

set of changes. Then, we ask CHIP to predict the n‐i actual change impact set in the commit. We exhaustively explore all combinations of size i

before increasing the size of the initial change set by 1 and repeat the process. We permutate all subsets in a commit as the given change sets

greedily since developers could start by changing any subset for a change task. Hence, our evaluation tests all possible scenarios how changes

may unfold. Meanwhile, since the order of changes are taken into consideration, we present “best case” defined as the change order with the

most optimal recall achieved. “Best case” imitates the actual scenario that developer makes the change. And “overall” permutates all possible sce-

narios of changes by summarizing results of all possible orders of changes.
6.1.1 | Data preprocessing

The evaluation excludes the testing code (eg, jUnit tests) because change impact between testing code and system code are usually expected and

for this reason are less important.52 Furthermore, we do not consider changed classes in the commit if the changes are merely (1) independent

formatting changes (eg, removing an empty line), or (2) API changes without reporting the changed classes. Although many existing impact set

prediction studies exclude merging commits or large classes, our study incorporates them all for a more comprehensive study purpose.

To investigate the effects of data sharing dependencies on predicting various change impact scenarios, we classify the commits in 4 systems

based on their change activities documented in commit messages into “move refactoring”, “remove class or statement”, “bug fixing”, “functional

improvement” and “code replacement,” which dominate in those systems. Section 3 has defined these change impact scenarios.
TABLE 6 Characteristics of 4 open source systems

System Version iTrust 13.0 GanttProject 2.0.9 jHotDraw 7.2 jEdit 4.3

Size (KLOC) 43 45 72 109

# of classes 461 475 546 503

Evaluated commits c216–c256 Most recent 76 commits to 2.0.9 c518–c798 c7998–c8340

Mined SVN logs for evolutionary couplings Since 2009‐08‐18 Since 2010‐12‐08 Since 2004‐02‐01 Since 2006‐09‐17

# of call dependencies 5954 5055 4550 6463

# of data sharing dependencies 92285 108779 112531 137370
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6.2 | Evaluation metrics

We measure precision (P) recall (R) and F2‐score of actual change impact set prediction. Here, F2‐score instead of F‐score is used because recall is

more important than precision in actual change impact set prediction. We here use an example to explain how the pair of metrics are measured for

an individual prediction experiment. For a commit C containing a set of changed classes {c1, c2, c3} and a starting set of changes {c1}, which is

known being changed by developer, if the predicted change impact set are classes {c1, c2, c4, c5}, then c1 and c2 are “true positive,” c4 and c5

are “false positive,” c3 is “false negative.” Thus, recall is measured as 2/3=66.7%, precision is 2/4=50% and F2‐score is 5*66.7%*50%/

(66.7%+4*50%)=62.5%. To measure the overall prediction accuracy for an entire system, we sum up the “true positive” (TPtotal), “false negative”

(FNtotal), and “false positive” (FPtotal) from all the prediction experiments on individual commits in a system and calculate the overall recall, precision

and F2‐score as follows:

recalltotal ¼ TPtotal
TPtotal þ FNtotal

; (4)

precisiontotal ¼ TPtotal
TPtotal þ FPtotal

; (5)

f2−sccoretotal ¼ 5∗recalltotal∗precisiontotal
recalltotal þ 4∗precisiontotal

: (6)

6.3 | Time efficiency compared with PDG

Table 7 shows the time efficiency of CHIP built on data sharing dependencies compared with PDG. Experiments were performed on a computer

with Intel Core i5 2.8GHz (configured with one thread and 8GB RAM). In terms of the dependency extraction time, as we expected, extracting all 4

types of data sharing dependencies costs more time than PDG since data sharing dependencies contains much finer‐grained information than the

PDG. In all cases, the time of extracting data sharing dependencies from execution traces generated in software testing phase are within afford-

able 82 minutes. Compared with PDG, it takes almost the same amount of time for CHIP to make each prediction of actual change impact set.
7 | EXPERIMENT RESULTS

This section presents the experiment results to answer our research questions.

7.1 | RQ1. Do data sharing dependencies complement call dependencies in actual change impact set prediction?

Results:The results of performancemetrics of call, data sharing dependencies and combined call and data sharing dependencies on the 4 systems

are shown inTable 8 (class‐level) and Table 9 (method‐level). Performance metrics are measured in 2 modes: best case and overall. As described in

Section 5.1, since the order of changes is considered. The order is known by developers who made those changes, but it is unknown to researchers.

Best case is the most likely change order according to the most optimal recall.Overall is the measure of all possible orders. Comparing the prediction

results of Pcdwith Pc, in class‐level predictions recall of Pcd outperforms Pc by 3.1% to 17.4%overall and 3.4% to 7.4% in best case over the 4 systems.

In method‐level predictions, recall improves by 3.4% to 32.1% overall and 3.7% to 7.1% in best case by Pcd compared with Pc. Adding extension I

(Dependency Frequency filter) and extension II (idf filter) to Pcd, prediction precision is also greatly improved. Table 10 shows that for class‐level pre-

dictions in iTrust, GanttProject, jHotDraw, and jEdit false positives are reduced by 97.2%, 93.6%, 72.0%, and 85% using Pcd+ext compared with Pcd,

while true positives are only compromised by only 3.4%, 8.9%, 5.6%, and 5.8% correspondingly. Comparing the prediction results of Pcd with Pc,

Table 8 shows that F2‐score of Pcd+ext outperforms Pc by 2.3% to 35.8% overall and as much as 38.3% in best case over 4 systems. In class‐level

prediction, best case Pcd+ext ensures recall over 90% and precision over 20% while in overall Pcd+ext achieves recall larger than 75%while keeping

precision greater than 10%. However, in jHotDraw, we found that Pc achieves better F2‐score than Pcd+ext, since intra‐class dependencies are not
TABLE 7 Time efficiency of Pcd+ext and Ppdg on 4 systems

Dependency Extraction Time CHIP Prediction Time

Systems Data Sharing Dependency PDG Data Sharing Dependency PDG

iTrust 27m21s 5m18s 44s 44s

GanttProject 27m54s 2m37s 1m4s 1m3s

jHotDraw 35m34s 4m20s 57s 1m7s

jEdit 81m16s 1m13s 47s 47s

Abbreviation: PDG, Program Dependence Graph.



TABLE 8 Four systems at class‐level: precision (P(%)), recall (R(%)), and F2‐score (F2(%)) by Pcd+ext, Pcd, Pd, Pc, Ppdg, and Pe

Systems
CHIP
Variants

Best Case Overall Overall‐Single

R P F2 R P F2 R P F2

iTrust Pcd+ext 96.6 40.0 75.3 90.6 40.7 72.7 82.8 25.0 56.6
Pcd 100.0 1.9 8.8 100.0 2.4 11.0 100.0 1.7 7.8
Pd 100.0 2.1 9.5 100.0 2.5 11.5 100.0 1.8 8.2
Pc 96.6 10.7 37.0 82.6 11.5 36.9 72.4 5.9 22.2
Ppdg 96.6 7.9 29.9 82.6 7.1 26.5 72.4 4.6 18.4
Pe 89.7 9.7 33.8 81.2 7.4 27.0 65.5 7.3 25.2

GanttProject Pcd+ext 90.6 53.5 79.6 80.5 19.3 49.3 60.1 10.0 29.1
Pcd 99.5 7.5 29.0 91.1 5.3 21.6 77.3 3.5 14.9
Pd 99.0 7.6 29.2 89.4 5.5 22.0 74.4 3.5 14.7
Pc 92.1 23.3 57.9 76.2 18.6 47.0 45.8 11.7 28.9
Ppdg 97.0 7.1 27.5 93.0 5.6 22.5 58.6 5.9 21.0
Pe 85.2 23.5 55.9 63.8 22.4 46.6 30.0 9.4 20.1

jHotDrw Pcd+ext 93.1 22.6 57.4 75.4 11.1 34.9 50.7 9.5 27.1
Pcd 98.6 8.0 30.1 78.7 8.5 29.7 66.4 4.4 17.4
Pd 96.2 7.8 29.4 76.7 8.5 29.4 61.9 4.2 16.5
Pc 93.1 21.4 55.7 65.8 25.6 50.1 46.0 12.5 30.0
Ppdg 96.3 9.5 34.0 72.4 9.8 31.7 50.9 6.1 20.7
Pe 69.7 48.0 63.9 57.8 57.6 57.8 25.5 22.0 24.7

jEdit Pcd+ext 93.3 24.0 59.2 87.7 13.8 42.3 77.1 12.4 37.8
Pcd 99.0 4.8 20.2 92.5 3.4 14.9 90.5 3.0 13.1
Pd 94.3 4.4 18.6 84.1 3.5 15.1 77.1 2.8 12.3
Pc 95.2 14.0 44.1 89.4 7.2 27.3 82.9 6.8 25.5
Ppdg 91.4 10.7 36.5 87.2 7.0 26.6 73.3 6.3 23.5
Pe 78.1 55.4 72.2 70.9 43.7 63.1 46.7 34.5 43.6

Abbreviation: CHIP, CHange Impact set Prediction.

TABLE 9 Four systems at method‐level: precision (P(%)), recall (R(%)), and F2‐score (F2(%)) by Pcd+ext, Pcd, Pd, Pc, Ppdg, and Pe

Systems
CHIP
Variants

Best Case Overall Overall‐Single

R P F2 R P F2 R P F2

iTrust Pcd+ext 96.3 100.0 97.0 89.2 84.2 86.0 81.5 100.0 84.6
Pcd 100.0 0.8 3.7 97.3 0.7 3.3 96.3 0.7 3.5
Pd 100.0 0.8 3.7 97.3 0.7 3.5 96.3 0.8 3.8
Pc 96.3 3.7 16.0 86.5 3.0 13.2 81.5 2.7 11.8
Ppdg 96.3 2.3 10.6 89.2 1.7 8.0 85.2 1.6 7.2
Pe 96.3 29.5 66.3 86.5 14.7 43.7 81.5 15.1 43.3

GanttProject Pcd+ext 91.5 63.1 84.0 82.1 58.4 76.0 60.6 54.1 59.2
Pcd 99.2 3.2 14.0 92.9 2.8 12.3 79.6 2.3 10.3
Pd 99.2 3.3 14.4 92.6 2.8 12.3 79.1 2.3 10.4
Pc 92.1 18.1 50.7 60.9 15.8 38.7 22.0 7.5 15.9
Ppdg 96.6 4.7 19.5 73.0 4.8 18.9 39.4 2.8 10.8
Pe 98.1 11.4 38.9 90.0 11.2 37.3 79.9 9.1 31.4

jHotDrw Pcd+ext 91.1 52.8 79.6 81.5 12.5 38.8 68.6 12.1 35.4
Pcd 97.8 0.8 4.0 95.3 0.8 3.9 91.8 0.8 3.7
Pd 97.5 0.8 4.0 95.2 0.8 3.9 91.5 0.8 3.7
Pc 92.8 10.1 35.2 81.3 9.0 31.1 68.4 7.5 26.1
Ppdg 94.5 2.6 11.7 85.3 2.5 11.1 75.4 2.0 9.2
Pe 90.3 9.9 34.4 85.3 8.5 30.3 76.0 7.4 26.7

jEdit Pcd+ext 92.9 57.0 82.5 82.9 70.8 80.2 62.1 43.3 57.2
Pcd 94.2 2.3 10.4 87.8 2.5 11.1 74.3 1.5 7.0
Pd 94.2 2.4 10.7 87.3 2.5 11.2 72.9 1.5 7.1
Pc 94.2 15.5 46.8 84.5 23.2 55.3 65.0 10.3 31.6
Ppdg 96.1 9.7 34.6 85.2 15.8 45.4 65.0 6.8 23.9
Pe 92.9 42.3 74.9 81.3 54.2 74.0 57.9 29.3 48.4

Abbreviation: CHIP, CHange Impact set Prediction.
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employed in class‐level change impact set prediction. An intra‐class dependency means code dependency between 2 methods in the same class.

Intra‐class dependencieswithin the same class are not leveraged in class‐level actual change impact set prediction across different classes.However,

for method‐level predictions, intra‐class dependencies are fully employed. Therefore, Table 9 shows that at method‐level F2‐score of Pcd+ext out-

performs Pc by 7.7% to 72.8% overall and 33.3% to 81.0% in best case over the 4 systems. In method‐level prediction best case Pcd+ext achieves

recall over 90% and precision over 50% while in overall mode, Pcd+ext achieves recall larger than 81% with precision greater than 10%. In general,

data sharing dependency complements call dependency in actual change impact set prediction.



TABLE 10 Prediction count before and after extensions applied on Pcd

Systems CHIP Variants True Positives(Reduced by) False Positives(Reduced by)

iTrust Pcd 29 1495

Pcd+ext 28(−3.4%) 42(−97.2%)

GanttProject Pcd 202 2476

Pcd+ext 184(−8.9%) 158(−93.6%)

jHotDrw Pcd 1096 12662

Pcd+ext 1035(5.6%) 3541(−72.0%)

jEdit Pcd 104 2055

Pcd+ext 98(5.8%) 310(84.9%)

Abbreviation: CHIP, CHange Impact set Prediction.
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Meanwhile, it is also interesting to learn the performance of CHIP when a single entity (method or class) is changed initially. For class‐

level prediction, Table 8 (“Overall‐single” column) shows that the recall of Pcd outperforms recall of Pc by 7.6% to 31.5% in all 4 systems.

For method‐level prediction, Table 9 (“Overall‐single” column) shows that Pcd improves recall by 9.3% to 57.6%. After the extensions was

added, the F2‐score is improved in the range of 0.2% to 34.4% by Pcd+ext in class‐level and 9.3% to 72.8% in the method‐level compared

with Pc. Because of the same reason previously mentioned, in jHotDraw Pc achieves better F2‐scores than Pcd+ext in class‐level actual

change impact set prediction.

Statistical Testing:To determine whether leveraging call and data sharing dependencies with extensions significantly improves the prediction

accuracy over standalone call dependencies, we apply 2‐tailed paired t test to determine whether the improvement of F2‐score by Pcd+ext over

F2‐score of Pc is significant using class‐level predictions as an example. Method‐level statistical test results are similar. Our null hypothesis is as

follows: There is no difference between F2‐score of Pcd+ext and F2‐score of Pc. Tables 11 and 12 show that in all 4 systems P < .0001, which sug-

gests that F2‐scores of Pcd+ext are significantly different than F2‐scores of Pc in those systems in both class‐level and method‐level predictions.

Since the mean of F2‐scores of Pcd+ext is greater than the mean of F2‐scores of Pc, the statistical test results suggest that F2‐score of Pcd+ext are

significantly larger than F2‐score of Pc in all 3 systems (except jHotDraw) with the confidence interval (CI) of 95% under the mean of prediction.

For jHotDraw, the mean of F2‐score of Pcd+ext appears to be less than F2‐score of Pc since intra‐class dependencies are not employed as

discussed earlier. In method‐level predictions, taking advantage of the intra‐class call and data sharing dependencies, the mean of F2‐scores
ABLE 11 Four systems at class‐level: paired t‐test results, mean, and confidence interval (CI) of F2‐score by Pcd+ext vs Pc, Pcd+ext vs Ppdg, and

cd+ext vs Pe

P Value Mean of F2‐score and CI

Pcd+ext vs Pc Pcd+ext vs Ppdg Pcd+ext vs Pe Pcd+ext, % Pc, % Ppdg, % Pe, %

iTrust <.0001 <.0001 .0001352 72.2 48.0 35.4 46.1

(66.7‐77.6) (41.0‐55.0) (29.1‐41.6) (36.5‐55.7)

GanttProject <.0001 <.0001 <.0001 54.1 52.2 26.2 50.1

(53.9‐54.4) (52.0‐52.5) (26.0‐26.4) (49.8‐50.3)

jHotDraw <.0001 <.0001 <.0001 40.8 54.3 37.9 58.3

(40.6‐41.1) (54.1‐54.6) (37.7‐38.2) (58.0‐58.5)

jEdit <.0001 <.0001 .0014272 55.6 41.7 38.2 64.6

(51.6‐59.5) (37.7‐45.8) (34.8‐41.6) (61.4‐67.9)

ABLE 12 Four systems at method‐level: paired t‐test results, mean, and confidence interval (CI) of F2‐score by Pcd+ext vs Pc, Pcd+ext vs Ppdg,
nd Pcd+ext vs Pe

P Value Mean of F2‐score and CI

Pcd+ext vs Pc Pcd+ext vs Ppdg Pcd+ext vs Pe Pcd+ext, % Pc, % Ppdg, % Pe, %

iTrust <.0001 <.0001 <.0001 65.1 12.6 8.3 35.0
(56.9‐71.8) (10.4‐14.9) (5.8‐10.8) (27.7‐42.4)

GanttProject <.0001 <.0001 <.0001 58.5 37.3 20.3 38.6
(53.9‐63.0) (33.9‐40.7) (18.9‐21.6) (36.6‐40.6)

jHotDraw <.0001 <.0001 .0008341 73.3 32.5 14.7 52.6
(67.2‐79.4) (27.8‐37.1) (11.1‐18.3) (44.0‐61.2)

jEdit <.0001 <.0001 .0029973 81.7 65.5 59.4 77.2
(81.4‐82.1) (65.1‐65.9) (58.9‐59.9) (76.8‐77.7)
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of Pcd+ext are greater than the mean of F2‐scores of Pc in all 4 systems, which suggest that F2‐score of Pcd+ext are significantly larger than F2‐

score of Pc in all 4 systems. Thus, the actual change impact set predictor built on combined call and data sharing dependencies outperforms the

predictor built on call dependencies only.

Summary:With an initial given set of changes, in overall and best cases, in average CHIP with combined code dependencies (Pcd) can predict

more than 90% of the actual change impact sets in both class‐ and method‐levels on the 4 systems, which significantly outperforms CHIP with

only call dependencies (Pc). Extended with Dependency Frequency and idf filters, precision of CHIP with combined code dependencies (Pcd) are

largely improved with little compromise of recall. Pcd+ext achieves significantly better F2‐score than Pc with call dependencies only. We conclude

that data sharing dependencies complement call dependencies in actual change impact set prediction.
7.2 | RQ2. How effective is the data sharing dependencies compared with traditional program dependence
graphs and evolutionary couplings in actual change impact set prediction?

Results: Table 8 (class‐level) and Table 9 (method‐level) show that CHIP based on combined call and data sharing dependencies with both

Dependency Frequency and idf filter extensions (Pcd+ext) genrerate significantly better prediction results as compared with that built upon

PDG (Ppdg). F2‐score is improved by 22.7% to 52.1% in best case and 3.2% to 46.2% overall in class‐level. F2‐score is improved even further

by 47.9% to 86.4% in best case and 27.7% to 78.0% overall in method‐level.

When comparing with Pe based on evolutionary couplings in class‐level predictions, Pcd+ext generate better prediction results than Pe in

iTrust and GanttProject. F2‐score is improved by 41.5% and 23.7% in best case and 45.7% and 2.7% overall in class‐level predictions. At

method‐level prediction, Pcd+ext achieves even better prediction results than Pe in all 4 systems, where F2‐scores are improved by 7.6% to

45.1% in best case and 6.2% to 42.3% overall. Figures 9 and 10 also show that in all 4 systems, by setting dependency frequency threshold

as none, the actual change impact sets predictions made by Pcd+ext can achieve increasingly better F2‐scores than Ppdg at both class‐ and

method‐levels with increasing idf threshold. Figures 9 and 10 also show that as idf threshold increases, Pd+ext can achieve even better F2‐score

than Pcd+ext. However, our goal is to achieve an optimal precision while maintaining recall at high level (above 75% at class‐level prediction,

above 80% at method‐level). In this case, we think Pcd+ext is more valuable than Pd+ext.

For the case that only a single class is given as the initial given set of changes, Pcd+ext outperforms Ppdg in class‐level by improving F2‐

score by 6.4% to 38.2%. Furthermore, in method‐level prediction, F2‐score is improved by 26.2% to 77.4%. Compared with Pe, Pcd+ext

achieves better F2‐scores for all systems except jEdit in class‐level prediction with the F2‐score improved by 2.4% to 31.4% (class‐level)

and 8.8% to 41.3% (method‐level).
IGURE 9 A‐D. Trend analysis on 4 systems in class‐level prediction: F2‐score (%) of prediction by Pcd+ext, Pd+ext, Pc, Ppdg, and Pe under
ifference idf threshold

IGURE 10 A‐D. Trend analysis on 4 systems in method‐level prediction: F2‐score (%) of prediction by Pcd + ext, Pd+ext, Pc, Ppdg, and Pe under
ifference idf threshold
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Statistical Testing: To determine whether combined call and data sharing dependencies with extensions significantly improves the prediction

over CHIP with PDG and evolutionary couplings, we apply 2‐tailed paired t test to determine whether the improvement of F2‐score by Pcd+ext

over F2‐score of Ppdg and Pe is significant. Our null hypothesis is as follows: (1) There is no difference between F2‐score of Pcd+ext and F2‐score of

Ppdg; (2) There is no difference between F2‐score of Pcd+ext and F2‐score of Pe. Tables 11 and 12 show that in all systems P < .01, which suggests

that F2‐scores of Pcd+ext are significantly different than F2‐scores of Ppdg and Pe in those systems in both class‐level and method‐level predic-

tions. Moreover, since the mean of F2‐scores of Pcd+ext are greater than the mean of F2‐scores of Ppdg and Pe, the statistical test results suggest

that F2‐score of Pcd+ext are significantly larger than F2‐score of Ppdg and Pe in all 4 systems with the confidence interval (CI) of 95% under the

mean of predictions at both class‐ and method‐levels. Our actual change impact set predictor built on combined call and data sharing dependen-

cies outperforms the state‐of‐the‐art approaches using PDG and evolutionary couplings.

Summary: Extended with Dependency Frequency and idf filters, given an initial set of changes, CHIP with combined code dependencies (Pcd

+ext) can achieve significantly better F2‐score than that with PDG only over all 4 systems. When comparing with CHIP with evolutionary cou-

plings only in method‐level predictions, by employing intra‐class code dependencies, Pcd+ext can achieve significantly better predictions with F2‐

score improved in all subject systems as well.
7.3 | RQ3. The combined call and data sharing dependencies (Pcd+ext) improve predictions in different change
impact scenarios as compared with standalone call dependencies (Pc)?

Results: Tables 13 and 14 show how Pcd+ext with specific kind of data sharing dependencies only (FA, FM, PP, CA) or with all 4 kinds com-

bined (overall) can contribute to 5 commonly encountered change impact scenarios. In general, they all achieve significantly better F2‐scores than

Pc. The results also show that for each of the 5 change impact scenarios, data sharing dependencies captured in specific JVM events better con-

tribute to the F2‐score of prediction than others. For example, in remove class or statement scenario, removal of code is sometimes caused by

the removal of software features. Thus, in data sharing dependencies from field access JVM events (FA) related to the removed code, the

accessed data probably needs to be changed as well. This change will then propagate to the classes that need to access that piece of data.

Table 13 shows that Pcd+ext with data sharing dependencies captured in FA (Pcd+ext‐FA) improves F2‐score by 20.9% in best case and 21.1%

overall compared with Pc in predicting the actual change impact sets due to class or statement removal. Also, in move refactoring scenario,
ABLE 13 Five actual change impact scenarios at class‐level: precision (P), recall (R), and F2‐score (F2) by Pcd+ext‐overall, Pcd+ext‐FA, Pcd+ext‐
M, Pcd+ext‐PP, Pcd+ext‐CE, and Pc

Systems CHIP Variants

Best Case Overall

R, % P, % F2, % R, % P, % F2, %

Move refactoring Pcd+ext‐overall 97.8 10.0 35.5 68.8 20.2 46.5
Pcd+ext‐FA 83.7 14.6 42.9 62.9 22.9 46.6
Pcd+ext‐FM 84.8 16.0 45.5 65.8 20.6 45.8
Pcd+ext‐PP 94.6 10.0 35.2 67.3 21.1 46.8
Pcd+ext‐CE 97.8 10.6 36.9 64.2 22.9 47.2
Pc 89.1 8.8 31.5 61.3 14.6 37.3

Remove class or statement Pcd+ext‐overall 77.8 10.6 34.3 67.3 10.2 31.8
Pcd+ext‐FA 77.8 14.8 42.0 67.3 18.3 43.8
Pcd+ext‐FM 77.8 13.0 39.0 67.3 17.1 42.4
Pcd+ext‐PP 77.8 10.2 33.4 67.3 10.0 31.4
Pcd+ext‐CE 74.1 13.1 38.3 66.0 10.7 32.4
Pc 77.8 5.4 21.1 67.3 6.2 22.7

Bug fixing Pcd+ext‐overall 85.4 25.2 57.8 62.2 33.9 53.3
Pcd+ext‐FA 90.0 24.4 58.5 66.9 30.1 53.8
Pcd+ext‐FM 68.2 32.3 55.8 62.0 34.2 53.3
Pcd+ext‐PP 84.0 27.2 59.2 63.4 30.2 52.0
Pcd+ext‐CE 89.4 24.9 58.9 65.7 30.2 53.2
Pc 96.3 21.8 57.3 76.7 18.4 47.0

Functional improvement Pcd+ext‐oveall 81.7 26.8 58.0 60.1 50.3 57.9
Pcd+ext‐FA 82.2 31.5 62.2 61.3 50.2 58.7
Pcd+ext‐FM 72.1 32.6 58.0 59.0 50.3 57.0
Pcd+ext‐PP 76.6 29.3 57.9 58.9 50.3 56.9
Pcd+ext‐CE 80.7 27.8 58.5 60.1 51.5 58.1
Pc 92.9 23.0 57.7 69.1 26.4 52.2

Code replacement Pcd+ext‐oveall 88.3 41.4 72.0 61.7 50.3 59.0
Pcd+ext‐FA 84.4 50.9 74.6 65.4 50.5 61.8
Pcd+ext‐FM 70.3 34.1 58.0 57.8 50.7 56.2
Pcd+ext‐PP 70.3 81.1 72.2 60.9 50.2 58.4
Pcd+ext‐CE 89.8 39.9 71.9 61.7 50.5 59.1
Pc 99.2 34.0 71.8 73.9 27.3 55.1

bbreviation: CHIP, CHange Impact set Prediction.



TABLE 14 Five actual change impact scenarios at method‐level: precision (P), recall (R), and F2‐score (F2) by Pcd+ext‐overall, Pcd+ext‐FA, Pcd
+ext‐FM, Pcd+ext‐PP, Pcd+ext‐CE, and Pc

Systems CHIP Variants

Best Case Overall

R, % P, % F2, % R, % P, % F2, %

Move refactoring Pcd+ext‐overall 95.9 11.6 39.2 80.8 20.1 50.3
Pcd+ext‐FA 92.5 12.5 40.6 78.7 8.8 30.3
Pcd+ext‐FM 92.5 11.8 39.2 78.0 20.1 49.5
Pcd+ext‐PP 96.6 11.6 39.2 81.4 20.0 50.5
Pcd+ext‐CE 96.6 11.7 39.3 78.7 20.0 49.6
Pc 96.6 11.6 39.2 80.8 9.9 33.2

Remove class or statement Pcd+ext‐overall 99.0 12.6 41.7 87.0 10.0 34.3
Pcd+ext‐FA 98.1 14.9 46.4 77.2 12.5 37.9
Pcd+ext‐FM 99.0 17.0 50.3 82.4 13.5 40.8
Pcd+ext‐PP 99.0 12.7 42.0 88.6 10.1 34.7
Pcd+ext‐CE 99.0 14.2 45.2 85.5 10.6 35.3
Pc 98.1 8.3 30.9 77.2 8.0 28.4

Bug fixing Pcd+ext‐overall 87.5 10.3 35.1 84.0 10.2 34.3
Pcd+ext‐FA 91.3 10.8 36.6 87.0 10.1 34.6
Pcd+ext‐FM 87.5 10.3 35.1 84.0 10.4 34.8
Pcd+ext‐PP 87.5 10.3 35.0 84.0 10.2 34.4
Pcd+ext‐CE 87.5 10.4 35.1 84.0 10.1 34.1
Pc 88.8 8.3 30.2 85.0 7.9 28.8

Functional improvement Pcd+ext‐overall 70.0 11.9 35.4 67.6 10.4 32.1
Pcd+ext‐FA 90.0 10.2 35.2 78.4 10.1 33.4
Pcd+ext‐FM 70.0 10.0 31.8 67.6 10.0 31.4
Pcd+ext‐PP 70.0 10.4 32.7 67.6 10.0 31.5
Pcd+ext‐CE 70.0 10.9 33.7 67.6 10.4 32.1
Pc 90.0 6.9 26.3 78.4 4.7 18.9

Code replacement Pcd+ext‐overall 72.2 21.7 49.2 56.3 50.0 54.9
Pcd+ext‐FA 73.3 21.5 49.4 57.4 22.7 43.9
Pcd+ext‐FM 72.2 22.8 50.4 56.3 23.4 43.9
Pcd+ext‐PP 72.2 21.5 49.1 56.5 23.2 43.9
Pcd+ext‐CE 74.4 20.8 49.1 56.8 23.1 43.9
Pc 87.5 17.8 49.0 64.2 19.4 43.9

Abbreviation: CHIP, CHange Impact set Prediction.
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the moved code may be used in new features at a new location other than the old location where it was moved from.53 The data that accessed or

manipulated by the moved code are also very likely to be changed and used in those new features, which will propagate changes to other classes

which the moved code has data sharing dependency with. Tables 13 and 14 show that under move refactoring scenario, Pcd+ext with field mod-

ification data sharing dependencies (Pcd+ext‐FM) improves F2‐score the most by 14% in best case compared with Pc. In each kind of scenario, we

can find at least one specific kind of data sharing dependencies achieve significantly better F2‐scores than Pc. Figures 11 and 12 also show that

by setting Dependency Frequency threshold as 0, with an increasing idf threshold, Pcd+ext built on all 4 types of data sharing dependencies can

achieve increasingly better F2‐scores than Pc.

Statistical Testing: The null hypothesis for RQ3 is as follows: There is no difference between F2‐score of Pcd+ext with selected type of data shar-

ing dependencies only and F2‐score of Pc. Tables 15 and 16 show that in all 5 scenarios, P is less than or around .01, which suggests that in specific

type of data sharing dependencies, F2‐score of Pcd+ext is significantly different than F2‐score of Pc in those scenarios in both class‐level and

method‐level predictions. Moreover, since the mean of F2‐scores of Pcd+ext are greater than the mean of F2‐scores of Pc, the statistical test

results suggest that F2‐score of Pcd+ext is significantly larger than F2‐score of Pc in all those scenarios with the confidence interval (CI) of

95% under the mean of predictions.

Summary: Under each of the 5 change impact scenarios, Pcd+ext with data sharing dependencies extracted from specific JVM events can

achieve better F2‐score than Pc.
8 | THREATS TO VALIDITY

8.1 | Dataset quality and completeness

Like all related works, one limitation of our evaluation is the potential incompleteness of the gold set of change commits for evaluation since the

quality and number of commits may influence the accuracy of prediction. Besides, we apply the dynamic analysis to capture call dependencies and

data sharing dependencies. Therefore, the quality and completeness of both dependencies may be influenced by the profiling data. But we believe



FIGURE 11 A‐E. Trend analysis in class‐level prediction: F2‐score(%) of prediction by different kinds of Pcd+ext vs Pc under difference idf
threshold

FIGURE 12 A‐E. Trend analysis in method‐level prediction: F2‐score(%) of prediction by different kinds of Pcd+ext vs Pc under difference idf
threshold
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TABLE 15 Five actual change impact scenarios at class‐level: paired t‐test results, mean, and confidence interval (CI) of F2‐score by Pcd+ext vs Pc

P Value
Mean of F2‐score and CI

Pcd+ext vs Pc Pcd+ext, % Pc, %

Move refactoring <.0001 58.9 49.4
(57.9‐59.9) (48.2‐50.6)

Remove class or statement <.0001 47.3 28.6
(44.0‐50.5) (26.5‐30.7)

Bug fixing <.0001 55.9 49.4
(54.9‐57.0) (48.2‐50.6)

Functional improvement .000670832 58.7 57.5
(58.4‐59.0) (57.2‐57.9)

Code replacement .00035209 59.4 59.3
(59.1‐59.7) (58.9‐59.6)

TABLE 16 Five actual change impact scenarios atmethod‐level: paired t‐test results, mean, and confidence interval (CI) of F2‐score by Pcd+ext vs Pc

P Value
Mean of F2‐score and CI

Pcd+ext vs Pc Pcd+ext, % Pc, %

Move refactoring .013787341 48.6 38.1

(41.7‐55.5) (31.3‐44.9)

Remove class or statement <.0001 45.0 25.9

(35.0‐55.0) (15.9‐35.9)

Bug fixing .000118944 46.8 29.3

(41.3‐52.3) (26.9‐31.7)

Functional improvement <.0001 43.8 21.4

(37.6‐50.0) (19.1‐23.6)

Code replacement <.0001 60.8 44.2

(60.2‐61.3) (43.9‐44.5)
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completeness of profiling data is not a serious threat since we capture complete execution traces by running through all function per requirements

and use case documents of each subject system.
8.2 | Execution traces without unique identifier

As other dynamic analysis research leveraging JVMTI to profile systems, we face the same problem of handling data records, including

static field and primitive local variables, which do not have a unique identifier.45 To solve this problem, we simply use the owner class's

identifier.
8.3 | Generalization of experiment results

Our empirical results are based on 4 large open source Java systems. Although these software systems are diversified in application domains, it still

requires further empirical evaluation on systems implemented in other programming languages and development paradigms. In the evaluation, we

use gold sets of commits from the SVN repositories. Similar to other research adopting the same strategy, we are aware that all classes in the same

commits might not be related to one another.
9 | RELATED WORK

9.1 | Mining software repositories based analysis

This class of research uses data mining approaches on historical code change repositories to detect frequent impact set patterns.1,16-21,26,54-63 For

instance, Zimmerman et al,16 Mondal et al,54 and Moonen et al64 all use association rules based mining on CVS logs for detecting evolutionary

coupling among source code entities. Ying et al17 use the similar approach to identify files that frequently change together. Steff and Russo55 per-

form CIA by analyzing historical change couplings. CHIANTI and its application61-63 do impact analysis by analyzing 2 versions of an application

and decomposes their difference into a set of atomic change. This kind of approach relies on the quality of software historical repositories. If insuf-

ficient historical data are available (such as new project or project with incomplete repository), mining software repository based techniques are
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inapplicable. Moreover, there are changes that contradict the frequent impact set patterns. Our approach, however, does not need to keep track

of or learn from a long code change history data, and our work does not reply on frequent impact set patterns, either.

9.2 | Textual analysis techniques

Some research work applies information retrieval (IR) techniques on textual data such as comments and/or identifiers in the source code. Gethers

et al65 present a CIA technique on textual change request. Kagdi et al66 extract conceptual coupling by comparing the similarity in source code

using IR‐based techniques. Hassan and Holt,1 Hassan and Gall,18 and Bavota et al20 predict change propagation on code textual semantic mea-

sures. Some recent works also study change recommendations for bug fixing. Park et al67 present their approach not only uses commit history

data but also uses the data of supplementary patch to investigate the omission errors reduction in change recommendation. Different from our

approach, the main purpose of their approach is for bug fixing, and sufficient amount of supplementary patch data is required. But our approach

does not rely on any supplementary patch or textual data. And in their work presented in Park et al,68 researchers also indicate that change rec-

ommendation for multi‐bug fixing has a higher level of severity and tend to be harder to recommend. Xia and Lo69 propose an approach called

SUPLOCATOR to recommend methods that need to be changed for bug fixing based on relationships among code such as method invocation,

containment, inheritance, historical changes, content similarities, and name similarities. Different from our approach, their major purpose is for

bug fixing and their approach relies on code inline text such as method invocation and name. Most of those techniques require developers to

encode the implicit relations in the comments and/or identifiers and hence the quality of the change prediction depends on the quality of the

encoding. When such kind of data are unavailable or in low quality, those approaches are limited. However, CHIP is not affected by such problem

because it does not rely on any textual data.
9.3 | Dynamic analysis techniques

Major dynamic impact analysis techniques include Dynamic Slicing, CoverageImpact, and PathImpact. Dynamic Slicing12-15 analyzes the change

impact by extracting slice from an execution trace. CoverageImpact4,6,31,70 leverages field data to perform CIA. PathImpact or similar approaches,

on the other hand, performs impact analysis on whole profiling,5,7-9,71,72 which, however, is difficult to acquire. Moreover, most of these tech-

niques focus on tracing individual system execution paths and focus on method calls73 while ignoring data (eg, fields or variables) shared across

execution paths. In our work, instead, we extracts a more comprehensive data sharing dependencies by referencing their IDs in memory, unveiling

some hidden relations in execution traces.
9.4 | Structural analysis techniques

A number of previous works3,29-37,39,40,49,74-77 focuses on the analysis of structural dependence, most of which leverage the call dependencies

among entities (most notably methods and classes) and Program Dependence Graph (PDG) as indicators for change impact set. Our work belongs

to this category. Other studies, such as Hassan et al,78 perform CIA for software architecture evolution relying on architecture models described

by architecture description languages (ADLs). Our work does not reply on any architecture models or ADLs. We have compared CHIP variants

based on data sharing dependencies and combined call and data sharing dependencies with existing predictors built on other structural dependen-

cies including call dependencies, PDG, and evolutionary couplings.
10 | CONCLUSIONS AND FUTURE WORK

The paper presents an automated approach and tool (CHIP) for software actual change impact set prediction built upon combined code structural

dependencies. It exploits not only call dependencies but also data sharing dependencies, a more comprehensive data dependency by referencing

shared data's ID in memory. To improve the precision of the basic predictor relying on data sharing dependencies (Pd and Pcd), we introduce 2

novel Dependency Frequency and data type idf filter extensions to the basic predictor. We have empirically evaluated CHIP in both method‐level

and class‐level actual change impact set predictions on 4 open source systems. The evaluation results support our hypothesis that data sharing

dependencies complement call dependencies in actual change impact set predictions with consistently improved recall and F‐score by as much

as 19.2% (class‐level) and 48.6% (method‐level) in average. The results also indicate that after applying data sharing dependencies with both

extension, CHIP consistently improves F2‐scores of prediction as compared with the ones built on Program Dependence Graph (PDG), which

includes dependencies based on data flow and control flow, as well as the ones built on evolutionary couplings in all 4 systems. By adding both

extensions to CHIP, the combined call and data sharing dependencies improve F2‐ score of prediction by as much as 46.2% (class‐level), 86.4%

(method‐level) compared with the predictors built on Program Dependence Graph (PDG), and 41.5% (class‐level), 45.1% (method‐level) compared

with the ones built on evolutionary couplings. Moreover, our empirical experiment results show that specific type of data sharing dependencies

are particularly useful on predicting certain change impact scenarios. Future work will further experiment our approach on other software systems

and exploring additional types and granularity of dependencies among various levels of code modules for software actual change impact set

prediction.
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